BlosSOM
Interactive dimensionality reduction on large datasets (EmbedSOM and FLOWER combined)
|
Storage of the dynamic parameters of the algorithms that are set in the GUI by user. More...
#include <training_config.h>
Public Member Functions | |
TrainingConfig () | |
Calls reset_data(). More... | |
void | reset_data () |
Resets values to their default values. More... | |
Public Attributes | |
float | som_alpha |
Alpha value for SOM algorithm. More... | |
float | kmeans_alpha |
Alpha value for kmeans algorithm. More... | |
float | sigma |
Sigma value for SOM algorithm. More... | |
float | gravity |
Gravity value for kmeans algorithm. More... | |
int | som_iters |
Number of iterations value for SOM algorithm. More... | |
int | kmeans_iters |
Number of iterations value for kmeans algorithm. More... | |
int | kns |
k-neighbors value for generating knn graph algorithm. More... | |
int | tsne_k |
k-neighbors value for t-SNE algorithm. More... | |
int | topn |
Landmark neighborhood size value for EmbedSOM algorithm. More... | |
float | boost |
Boost value for EmbedSOM algorithm. More... | |
float | adjust |
Adjust value for EmbedSOM algorithm. More... | |
bool | kmeans_landmark |
Flag that indicates if the kmeans algorithm should be used. More... | |
bool | som_landmark |
Flag that indicates if the SOM algorithm should be used. More... | |
bool | knn_edges |
Flag that indicates if the kNN graph should be generated. More... | |
bool | graph_layout |
Flag that indicates if the graph layout algorithm should be used. More... | |
bool | tsne_layout |
Flag that indicates if the t-SNE algorithm should be used. More... | |
Storage of the dynamic parameters of the algorithms that are set in the GUI by user.
Definition at line 28 of file training_config.h.
|
inline |
Calls reset_data().
Definition at line 71 of file training_config.h.
|
inline |
Resets values to their default values.
Definition at line 77 of file training_config.h.
float TrainingConfig::adjust |
Adjust value for EmbedSOM algorithm.
Definition at line 54 of file training_config.h.
float TrainingConfig::boost |
Boost value for EmbedSOM algorithm.
Definition at line 52 of file training_config.h.
bool TrainingConfig::graph_layout |
Flag that indicates if the graph layout algorithm should be used.
Definition at line 63 of file training_config.h.
float TrainingConfig::gravity |
Gravity value for kmeans algorithm.
Definition at line 37 of file training_config.h.
float TrainingConfig::kmeans_alpha |
Alpha value for kmeans algorithm.
Definition at line 33 of file training_config.h.
int TrainingConfig::kmeans_iters |
Number of iterations value for kmeans algorithm.
Definition at line 42 of file training_config.h.
bool TrainingConfig::kmeans_landmark |
Flag that indicates if the kmeans algorithm should be used.
Definition at line 57 of file training_config.h.
bool TrainingConfig::knn_edges |
Flag that indicates if the kNN graph should be generated.
Definition at line 61 of file training_config.h.
int TrainingConfig::kns |
k-neighbors value for generating knn graph algorithm.
Definition at line 45 of file training_config.h.
float TrainingConfig::sigma |
Sigma value for SOM algorithm.
Definition at line 35 of file training_config.h.
float TrainingConfig::som_alpha |
Alpha value for SOM algorithm.
Definition at line 31 of file training_config.h.
int TrainingConfig::som_iters |
Number of iterations value for SOM algorithm.
Definition at line 40 of file training_config.h.
bool TrainingConfig::som_landmark |
Flag that indicates if the SOM algorithm should be used.
Definition at line 59 of file training_config.h.
int TrainingConfig::topn |
Landmark neighborhood size value for EmbedSOM algorithm.
Definition at line 50 of file training_config.h.
int TrainingConfig::tsne_k |
k-neighbors value for t-SNE algorithm.
Definition at line 47 of file training_config.h.
bool TrainingConfig::tsne_layout |
Flag that indicates if the t-SNE algorithm should be used.
Definition at line 65 of file training_config.h.