BlosSOM
Interactive dimensionality reduction on large datasets (EmbedSOM and FLOWER combined)
Public Member Functions | Public Attributes | List of all members
TrainingConfig Struct Reference

Storage of the dynamic parameters of the algorithms that are set in the GUI by user. More...

#include <training_config.h>

Public Member Functions

 TrainingConfig ()
 Calls reset_data(). More...
 
void reset_data ()
 Resets values to their default values. More...
 

Public Attributes

float som_alpha
 Alpha value for SOM algorithm. More...
 
float kmeans_alpha
 Alpha value for kmeans algorithm. More...
 
float sigma
 Sigma value for SOM algorithm. More...
 
float gravity
 Gravity value for kmeans algorithm. More...
 
int som_iters
 Number of iterations value for SOM algorithm. More...
 
int kmeans_iters
 Number of iterations value for kmeans algorithm. More...
 
int kns
 k-neighbors value for generating knn graph algorithm. More...
 
int tsne_k
 k-neighbors value for t-SNE algorithm. More...
 
int topn
 Landmark neighborhood size value for EmbedSOM algorithm. More...
 
float boost
 Boost value for EmbedSOM algorithm. More...
 
float adjust
 Adjust value for EmbedSOM algorithm. More...
 
bool kmeans_landmark
 Flag that indicates if the kmeans algorithm should be used. More...
 
bool som_landmark
 Flag that indicates if the SOM algorithm should be used. More...
 
bool knn_edges
 Flag that indicates if the kNN graph should be generated. More...
 
bool graph_layout
 Flag that indicates if the graph layout algorithm should be used. More...
 
bool tsne_layout
 Flag that indicates if the t-SNE algorithm should be used. More...
 

Detailed Description

Storage of the dynamic parameters of the algorithms that are set in the GUI by user.

Definition at line 28 of file training_config.h.

Constructor & Destructor Documentation

◆ TrainingConfig()

TrainingConfig::TrainingConfig ( )
inline

Calls reset_data().

Definition at line 71 of file training_config.h.

Here is the call graph for this function:

Member Function Documentation

◆ reset_data()

void TrainingConfig::reset_data ( )
inline

Resets values to their default values.

Definition at line 77 of file training_config.h.

Here is the caller graph for this function:

Member Data Documentation

◆ adjust

float TrainingConfig::adjust

Adjust value for EmbedSOM algorithm.

Definition at line 54 of file training_config.h.

◆ boost

float TrainingConfig::boost

Boost value for EmbedSOM algorithm.

Definition at line 52 of file training_config.h.

◆ graph_layout

bool TrainingConfig::graph_layout

Flag that indicates if the graph layout algorithm should be used.

Definition at line 63 of file training_config.h.

◆ gravity

float TrainingConfig::gravity

Gravity value for kmeans algorithm.

Definition at line 37 of file training_config.h.

◆ kmeans_alpha

float TrainingConfig::kmeans_alpha

Alpha value for kmeans algorithm.

Definition at line 33 of file training_config.h.

◆ kmeans_iters

int TrainingConfig::kmeans_iters

Number of iterations value for kmeans algorithm.

Definition at line 42 of file training_config.h.

◆ kmeans_landmark

bool TrainingConfig::kmeans_landmark

Flag that indicates if the kmeans algorithm should be used.

Definition at line 57 of file training_config.h.

◆ knn_edges

bool TrainingConfig::knn_edges

Flag that indicates if the kNN graph should be generated.

Definition at line 61 of file training_config.h.

◆ kns

int TrainingConfig::kns

k-neighbors value for generating knn graph algorithm.

Definition at line 45 of file training_config.h.

◆ sigma

float TrainingConfig::sigma

Sigma value for SOM algorithm.

Definition at line 35 of file training_config.h.

◆ som_alpha

float TrainingConfig::som_alpha

Alpha value for SOM algorithm.

Definition at line 31 of file training_config.h.

◆ som_iters

int TrainingConfig::som_iters

Number of iterations value for SOM algorithm.

Definition at line 40 of file training_config.h.

◆ som_landmark

bool TrainingConfig::som_landmark

Flag that indicates if the SOM algorithm should be used.

Definition at line 59 of file training_config.h.

◆ topn

int TrainingConfig::topn

Landmark neighborhood size value for EmbedSOM algorithm.

Definition at line 50 of file training_config.h.

◆ tsne_k

int TrainingConfig::tsne_k

k-neighbors value for t-SNE algorithm.

Definition at line 47 of file training_config.h.

◆ tsne_layout

bool TrainingConfig::tsne_layout

Flag that indicates if the t-SNE algorithm should be used.

Definition at line 65 of file training_config.h.


The documentation for this struct was generated from the following file: